Functional evolution of Erg potassium channel gating reveals an ancient origin for IKr.

نویسندگان

  • Alexandra S Martinson
  • Damian B van Rossum
  • Fortunay H Diatta
  • Michael J Layden
  • Sarah A Rhodes
  • Mark Q Martindale
  • Timothy Jegla
چکیده

Mammalian Ether-a-go-go related gene (Erg) family voltage-gated K(+) channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus. The Drosophila Erg channel does not inactivate and closes rapidly upon repolarization. The dramatically different properties observed in mammalian and Drosophila Erg homologs bring into question the evolutionary origins of distinct Erg K(+) channel functions. Erg channels are highly conserved in eumetazoans and first evolved in a common ancestor of the placozoans, cnidarians, and bilaterians. To address the ancestral function of Erg channels, we identified and characterized Erg channel paralogs in the sea anemone Nematostella vectensis. N. vectensis Erg1 (NvErg1) is highly conserved with respect to bilaterian homologs and shares the IKr-like gating phenotype with mammalian Erg channels. Thus, the IKr phenotype predates the divergence of cnidarians and bilaterians. NvErg4 and Caenorhabditis elegans Erg (unc-103) share the divergent Drosophila Erg gating phenotype. Phylogenetic and sequence analysis surprisingly indicates that this alternate gating phenotype arose independently in protosomes and cnidarians. Conversion from an ancestral IKr-like gating phenotype to a Drosophila Erg-like phenotype correlates with loss of the cytoplasmic Ether-a-go-go domain. This domain is required for slow deactivation in mammalian Erg1 channels, and thus its loss may partially explain the change in gating phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICA-105574 interacts with a common binding site to elicit opposite effects on inactivation gating of EAG and ERG potassium channels.

Rapid and voltage-dependent inactivation greatly attenuates outward currents in ether-a-go-go-related gene (ERG) K(+) channels. In contrast, inactivation of related ether-a-go-go (EAG) K(+) channels is very slow and minimally reduces outward currents. ICA-105574 (ICA, or 3-nitro-N-[4-phenoxyphenyl]-benzamide) has opposite effects on inactivation of these two channel types. Although ICA greatly ...

متن کامل

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

Spatial heterogeneity of myocardial perfusion predicts local potassium channel expression and action potential duration.

AIMS In the heart, there is not only a transmural gradient of left ventricular perfusion and action potential duration (APD), but also spatial heterogeneity within each myocardial layer, where local blood flow and energy turnover vary more than three-fold between individual regions. We analysed at high spatial resolution whether a corresponding heterogeneity also extends to ion channel gene exp...

متن کامل

Electrophysiological properties and expression of the delayed rectifier potassium (ERG) channels in the heart of thermally acclimated rainbow trout.

In ectotherms, compensatory changes in ion channel number and activity are needed to maintain proper cardiac function at variable temperatures. The rapid component of the delayed rectifier K+ current (IKr) is important for repolarization of cardiac action potential and, therefore, crucial for regulation of cellular excitability and heart rate. To examine temperature plasticity of cardiac IKr, w...

متن کامل

Erg potassium currents of neonatal mouse Purkinje cells exhibit fast gating kinetics and are inhibited by mGluR1 activation.

We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 15  شماره 

صفحات  -

تاریخ انتشار 2014